Computing cyclic invariants for molecular graphs
نویسندگان
چکیده
منابع مشابه
Computing cyclic invariants for molecular graphs
Ring structures in molecules belong to the most important substructures for many applications in Computational Chemistry. One typical task is to find an implicit description of the ring structure of a molecule. We present efficient algorithms for cyclic graph invariants that may serve as molecular descriptors to accelerate database searches. Another task is to construct a well-defined set of ri...
متن کاملApplications of some Graph Operations in Computing some Invariants of Chemical Graphs
In this paper, we first collect the earlier results about some graph operations and then we present applications of these results in working with chemical graphs.
متن کاملapplications of some graph operations in computing some invariants of chemical graphs
in this paper, we first collect the earlier results about some graph operations and then wepresent applications of these results in working with chemical graphs.
متن کاملNew Algorithm For Computing Secondary Invariants of Invariant Rings of Monomial Groups
In this paper, a new algorithm for computing secondary invariants of invariant rings of monomial groups is presented. The main idea is to compute simultaneously a truncated SAGBI-G basis and the standard invariants of the ideal generated by the set of primary invariants. The advantage of the presented algorithm lies in the fact that it is well-suited to complexity analysis and very easy to i...
متن کاملMilnor Invariants for Spatial Graphs
Link homotopy has been an active area of research for knot theorists since its introduction by Milnor in the 1950s. We introduce a new equivalence relation on spatial graphs called component homotopy, which reduces to link homotopy in the classical case. Unlike previous attempts at generalizing link homotopy to spatial graphs, our new relation allows analogues of some standard link homotopy res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Networks
سال: 2017
ISSN: 0028-3045
DOI: 10.1002/net.21757